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Plant disease detection using leaf images and an involutional neural 
network 

Introduction 
Agriculture and agriculture-related activities provide 
a living for an enormous number of people across 
the world. Plant diseases are a serious threat to food 
security and economic losses (Vishnoi et al., 2020; 
Vishnoi et al., 2021). It is often difficult to obtain 
the desired crop yield due to various plant diseases. 
In countries such as India, many smallholder farmers 
depend on healthy crops for their livelihood. Detect-
ing and treating plant diseases at the initial stage is 
crucial for preventing substantial losses in yield. 
Plant diseases lead to a loss of $20 billion world-
wide annually due to a lack of timely treatment 
(Pantazi et al., 2019). Therefore, efficient disease 
management is crucial for preventing crop yield. 
Conventionally, people rely on expert knowledge to  

 
identify plant diseases. However, expert knowledge 
depends on experience, which can be subjective and 
sometimes biased. Modern computing techniques 
such as machine learning and deep learning, along 
with digital image processing, offer alternatives for 
detecting plant diseases without expert knowledge 
(Sujatha et al., 2020). The process involves captur-
ing digital images of the plants and analyzing fea-
tures such as spots, wilting, color, and texture, etc., 
with the help of machine learning models. In recent 
years, various deep learning techniques have exhibit-
ed excellent performance. Deep learning is being 
widely used to develop image processing-based 
methods for plant disease identification due to its 
ability to learn features and high accuracy (Chen et 

 Journal homepage:https://www.environcj.in/ 

Environment Conservation Journal 
ISSN 0972-3099 (Print) 2278-5124 (Online) 

Priyanka Pradhan 
Department of Computer Science & Information Technology, MJP Rohilkhand University, Bareilly, India 
 
Brajesh Kumar 
Department of Computer Science & Information Technology, MJP Rohilkhand University, Bareilly, India 
 
Krishan Kumar 
Department of Computer Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand India 
 
Rakesh Bhutiani 
Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand India 

ARTICLE INFO ABSTRACT 
Received : 15 January 2024 
Revised   : 05 April 2024 
Accepted : 13 April 2024 
  
Available online: 30 April 2024 
  
Key Words: 
Convolutional neural network 
Image classification 
Involution neural network 
Plant disease 
Pretrained network 
Transfer learning  

The human population and domestic animals rely heavily on agriculture for their 
food and livelihood. Agriculture is an important contributor to the national econo-
my of many countries. Plant diseases lead to a significant reduction in agricultural 
yield, posing a threat to global food security. It is crucial to detect plant diseases in 
a timely manner to prevent economic losses. Expert diagnosis and pathogen analy-
sis are widely used for the detection of diseases in plants. However, both expert 
diagnosis and pathogen analysis rely on the real-time investigation experience of 
experts, which is prone to errors. In this work, an image analysis-based method is 
proposed for detecting and classifying plant diseases using an involution neural 
network and self-attention-based model. This method uses digital images of plant 
leaves and identifies diseases on the basis of image features. Different diseases 
affect leaf characteristics in different ways; therefore, their visual patterns are 
highly useful in disease recognition. For rigorous evaluation of the method, leaf 
images of different crops, including apple, grape, peach, cherry, corn, pepper, 
potato, and strawberry, are taken from a publicly available PlantVillage dataset 
to train the developed model. The experiments are not performed separately for 
different crops; instead, the model is trained to work for multiple crops. The ex-
perimental results demonstrate that the proposed method performed well, with an 
average classification accuracy of approximately 98.73% (κ = 98.04) for 8 differ-
ent crops with 23 classes. The results are also compared with those of several ex-
isting methods, and it is found that the proposed method outperforms the other 
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al., 2020; Li et al., 2021; Cao et al., 2021). In par-
ticular, convolutional neural networks (CNNs) are 
the leading methods used in classification and re-
gression-based applications (Pradhan et al., 2022; 
Pradhan and Kumar, 2022). Different layers in the 
CNN architecture can learn complex features with-
out any additional techniques. Wang et al. (2019) 
developed an AlexNet-based CNN model for disease 
identification in tomato leaves and achieved an over-
all accuracy of 97.62%. Pradhan and Kumar (2021) 
also developed a CNN model for detecting tomato 
leaf diseases and reported an overall accuracy of 
96.26%. Bernardo et al. (2021) used a CNN to detect 
Helminthosporium leaf spot disease in wheat crops 
with an accuracy of 91.43%. Afifi et al. (2021) de-
veloped two baseline models, a triplet network and a 
deep adversarial metric learning strategy, three dif-
ferent CNN architectures, ResNet18, ResNet34, and 
ResNet50. These models are trained on a large da-
taset and intended to identify novel diseases when a 
sufficient number of training images are not availa-
ble. Thakur et al. (2023) proposed a lightweight 
model called VGG-ICNN that detected plant diseas-
es with a good accuracy of 99.16%. A simplified 
CNN model with only 8 hidden layers was devel-
oped by Agarwal et al. (2020) that performed better 
than several existing methods, resulting in 98.4% 
accuracy. Zhang et al. (2019) modified the R-CNN 
for a faster version and identified rice diseases with 
good accuracy. Vishnoi et al. (2022) introduced a 
lightweight CNN model and proposed a disease de-
tection method for apple leaves that takes advantage 
of augmentation techniques to train the model with a 
small number of images. The author reported an ac-
curacy of 98%. Stephen et al. (2024) used a combi-
nation of different deep learning techniques to iden-
tify rice diseases. They extracted features with the 
help of a 3D2D CNN model, which were classified 
using an optimized deep generative adversarial net-
work. Ahmad et al. (2023) assessed several deep 
learning models across various datasets and environ-
mental conditions. They emphasized that back-
ground removal and data augmentation methods are 
effective at increasing model accuracy for field-
deployed disease management systems. Tembhurne 
et al. (2023) analyzed the ability of deep learning 
algorithms to accurately identify and manage crop 
diseases. The authors developed an Android applica-
tion named Plantscape based on MobileNet for mon-
itoring plant health and reported an accuracy of 
95.94%. Jung et al. (2023) developed a stepwise dis-
ease detection framework using a CNN to automate 
plant disease detection for better quality and yield. 
The model achieved a good accuracy of 97.09%. 
Shovon et al. (2023) presented a new deep ensemble 
model called PlantDet, which is based on the Incep-
tionResNetV2, EfficientNetV2L, and Xception ar-
chitectures. A high accuracy of 98.53% was reported 
for rice leaf diseases. Pavithra and Aishwarya (2024) 

proposed a novel method based on a modified Wie-
ner filter, improved ant colony optimization, hybrid 
grasshopper optimization, and a modified artificial 
bee colony algorithm for plant disease classification 
and achieved a high accuracy of 98.53% on the 
PlantVillage dataset. Joseph et al. (2024) proposed a 
CNN model and evaluated its performance on maize, 
wheat, and rice crops with accuracies of 95.80%, 
96.32%, and 97.28%, respectively. Despite the re-
markable success, there are several issues with CNN
-based methods. Most of the existing deep CNN 
techniques rely on fixed-size receptive fields, which 
may hinder their ability to efficiently capture data at 
various scales. Because receptive fields are fixed, 
they may perform less well when interacting with 
features or objects of different sizes within an image 
(Huang et al., 2022). CNNs frequently include many 
parameters, especially in deeper layers. In addition, 
CNNs typically gather data from the receptive field 
to capture the local context. It might be difficult to 
effectively capture the global context or long-range 
dependencies, which are essential for comprehend-
ing complex scenes or capturing relationships be-
tween far-off objects. To address some of these is-
sues, involution neural networks (INNs), which are 
computationally efficient and more parallelizable, 
are used as alternatives to CNNs (Chen et al., 2021). 
Unlike standard convolution kernels, which are spa-
tially agnostic and channel specific, involution ker-
nels are more suitable for capturing long-range spa-
tial information while minimizing network parame-
ters. Xu et al. (2017) demonstrated that involution 
can enable fast and efficient plant disease detection. 
Huang et al. (2022) proposed an involution-based 
method that uses bottleneck blocks of residual net-
works instead of convolution neural networks. They 
developed a feature selection feature pyramid net-
work that enables flexible and adaptable feature se-
lection to effectively diagnose plant diseases. A 
number of methods have been developed to auto-
mate plant disease detection. However, most of the 
existing methods are tested on individual crops. A 
more realistic system should work for multiple 
crops. In this work, an involution-based plant disease 
detection method was developed. Other techniques 
are also used in the overall framework to effectively 
utilize the relevant information. The developed 
method is not crop specific and works for multiple 
crops. Several experiments were carried out to eval-
uate the proposed method on various crops, includ-
ing apple, cherry, corn, grape, peach, pepper, potato, 
and strawberry. 
 
Materials and methods 
A deep learning approach is used in this work to de-
tect and diagnose plant diseases using leaf images. 
The workflow of the procedure for identifying plant 
diseases is shown in Figure 1. The first step involves 
capturing images of plant leaves and labeling them 
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according to the health of the leaves. However, this 
step is performed with the help of experts in the 
field. The collected images may contain some un-
wanted information in the background. Therefore, a 
segmentation operation is applied to remove the 
background. The refined set of images is divided 

into training and test sets. The involution model is 
trained using the training set of images. Once the 
training is completed, the trained model can be used 
to detect diseases in any leaf image. The perfor-
mance of the model is analyzed with the help of the 
test set. 

Figure 1. Workflow for automated leaf disease detection using an involution neural network 

Dataset 
The leaf images for different crops are obtained from 
a publicly available PlantVillage repository that con-
tains over 54,000 images across 38 crop categories. 
Eight crops of 23 different classes were selected: 
apple (Malus domestica), cherry (Prunus avium), 
corn (Zea mays), grape (Vitis vinifera), peach 
(Prunus persica), pepper (Capsicum), potato 
(Solanum tuberosum), and strawberry (Fragaria 
xananassa). A total number of 21,768 images are 
distributed across different health classes, as shown 
in Figure 2. Table 1 provides the distribution of im-
ages for each class in the dataset. For each class, 
75% of the samples are taken for training, and the 
remaining samples form the test set.  

Image segmentation 
The main purpose of segmentation is to identify spe-
cific regions of interest and eliminate unwanted 
background in an image. It helps to isolate the af-
fected area and make the image simpler to analyze. 
GrabCut (Qi F et al., 2022) is a well-known image 
segmentation algorithm based on the Gaussian mix-
ture model. It estimates the color distribution of the 
target region and background to create a Markov 
random field over pixel labels. It is formulated as an 
energy minimization problem (Xiong et al., 2020). 
The energy function is defined as follows: 

  (1) 

 

                                                    
where S represents the segmentation mask, Ed 

measures the difference in colors between the fore-
ground and background pixels, and the smoothness 
term Esm is used for spatial coherence. The data term 
is expressed as follows: 

 (2) 

 

where i is the pixel index, Sf represents the fore-
ground region, Sb is the background region, and D(i) 
is the color vector. The terms    and 

are the measures of similarity of the foreground and 
background models, respectively. The smoothness 
term Esm(.) is given by 

 (3) 

  

where parameter λ controls the trade-off between 
Esm(ā) and Esm(ā), N is the set of neighboring pixel 
pairs, w(i, j) is the spatial weight, and S(ā) is the 
segmentation value of a pixel. The algorithm works 
iteratively and updates the segmented regions until 
it converges. Figure 3 shows a sample image seg-
mented via the GrabCut method. 
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Figure 2. Dataset image sample of 23 different crops classes, including healthy and unhealthy crop leaves 

                        Table 1. Plant Leaf Disease Dataset (Training Set and Test Set) 

Name of 
Crop 

Scientific Name 
of Crop 

Crop Disease/ 
Health Class 

Total Training 
Set (75%) 

Test Set 
(25%) 

 
  
    Apple 
  

  
         Malus 
     domestica 
 

Scab 504 378 126 
Apple Black Rot 497 373 124 
Apple Cedar Rust 220 165 55 
Apple Healthy 1316 987 329 

    Cherry    Prunus avium Cherry Healthy 513 171 684 
Powdery Mildew 632 211 842 

 
 
    Corn 
  

  
  
      Zea mays 
 

Gray Leaf Spot 411 308 103 
Common Rust 954 716 239 
Corn Healthy 930 698 233 
Northern Leaf Blight 788 591 197 

  
 
    Grape 
  

  
   Vitis vinifera 
 

Grape Black Rot 944 708 236 
Esca 1107 830 277 
Grape Healthy 339 254 85 
Grape Leaf Blight 861 646 215 

    Peach 
 

       Prunus 
\    persica 

Peach Bacterial Spot 1838 1379 460 

Peach Healthy 288 216 72 
    Pepper 
  

    Capsicum Bell Bacterial Spot 798 599 200 
Pepper Healthy 1183 887 296 

    Potato 
  

       Solanum 
    tuberosum 

Early Blight 800 600 150 
Potato Healthy 122 92 31 
Potato Late Blight 800 600 150 

  
  Strawberry 
 

  
      Fragaria 
     ananassa 

Strawberry Healthy 365 274 91 
Leaf Scorch 888 666 222 
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Convolution Neural Network 
A CNN model consists of a layered architecture that 
consists of different types of layers stacked together 
in a cascade (Xu Y et al., 2017). The output of one 
layer is input to the next layer in the stack. An input 
image is processed by multiple layers to extract use-
ful information. Convolutional and pooling are the 
two major layer types in a CNN. These layers per-
form some typical mathematical operations on the 
input data to produce feature maps. Several nonline-
ar activation functions also operate on feature maps 
(Saleem et al., 2021). An activation function adds 
nonlinearity to the model and helps to adjust the size 
of the feature maps. A convolutional layer typically 
convolves an input image with a set of filters. The 
convolution operation is defined as follows: 

 

 (4) 

Where   

Represents the output feature maps that are con-
volved with kernel vi,j for a set of input maps T j and 
sj is the bias term at layer j. The height-to-length 
ratio F of the resulting feature map is determined as 
follows: 

 (5) 

 

where K is the filter size, W  is the height/length ratio 
of the input, P is the padding size, and S represents 
the stride. The edges of the input can be padded with 
zeros to maintain the output size. An activation func-
tion is used to reduce vanishing gradients and speed 
up model training. ReLu is one of the most suitable 
activation functions for multiclass classification. It 
transforms any negative activation values to zero 
and can be expressed as follows: 

 f (m) = max(0, m)  (6) 

In addition, the fully connected layers integrate the 
features determined at the previous layer to simplify 
the classification process. This layer generates an N-

Figure 3. (a) Original image and (b) segmented plant 
leaf using the GrabCut segmentation technique 

dimensional vector at the output for an N-class 
problem. The last layer in the model is the output 
layer, which uses a classifier such as softmax that 
assigns class labels based on the probability distri-
bution. Effective training requires a large number of 
high-quality samples, which may not always be 
available. Transfer learning can help address this 
matter by leveraging the knowledge gained from 
solving one problem to another. A CNN that was 
previously trained for a similar task can be fine-
tuned with data from the current task. This helps 
reduce computing time and resources, as well as 
avoid the need for more extensive training. Some 
models have been trained and are now publicly 
available for use. DenseNet, InceptionResNetV2, 
InceptionV3, ResNet, VGG16, and VGG19 are 
among the popular pretrained models and can be 
reused across domains via the transfer learning ap-
proach. 
 
Involution Neural Network 
A conventional convolutional layer applies a small 
filter or kernel that slides over the entire image to 
calculate the weighted sum of the nearby pixels. It is 
good at capturing local features, but it may find it 
difficult to effectively capture the global context. 
Unlike convolution, involution uses different ker-
nels at different locations. The dimensions of an 
involution kernel depend on the dimensions of the 
input image. However, these kernels can be shared 
across spectral bands. Therefore, involution kernels 
(Xu et al., 2017) are known as location-specific and 
spectral-agnostic kernels that are able to handle long
-range interactions. These kernels are adaptive and 
can adjust their weights according to the input. The 
kernel generation function ϕ(ā) (Liang and Wang 
2021) is used to determine the kernel size for a pixel 
(i, j) in involution as follows: 

   (7) 

 

The involution inverts the inherence of the convolu-
tion, which can adjust to the specific details to high-
light the most significant features. Involution can 
particularly handle local features with a reduced 
computational cost compared to convolution opera-
tions. The process of involution is shown in Figure 
4. Involution has shown better performance than 
convolution for several computer vision tasks, such 
as classification and object detection. Overall, invo-
lution is a promising technique that complements 
convolution for image processing tasks with better 
accuracy. 

Proposed framework for disease detection 
Figure 5 illustrates the proposed method in the form 
of a flowchart. As shown in the figure, first, the in-
put image is segmented to remove undesirable back-
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ground details. The segmentation is performed by 
applying the GrabCut method. The segmented image 
is then input to the involutional neural network. The 
proposed involutional neural network architecture 
consists of one MobileNetV2 block, one MobileNet 
Involution block, and two basic blocks. The basic 

block consists of a convolutional layer with a 3x3 
kernel. It uses a stride of 1, a padding of 0, and the 
ReLU activation function. The MobileNetV2 block 
is a group of four basic blocks with kernels of sizes 
3x3, 1x1, 3x3, and 1x1. The MobileNet Involution 
block consists of four convolutional layers and one 

Figure 4. Involution Model for Automated Leaf Disease Detection 

Figure 5. Proposed Model of the Involution Neural Network  

The self-attention mechanism extracts important fea-
tures in the input image (Chen et al., 2021), improv-
ing its ability for object classification and detection. 
The attention mechanism computes an attention map 

over image pixels that assigns weights to the pixels 
or regions based on the relevance to the task. The 
mechanism then aggregates the features from differ-
ent regions to emphasize the most important por-
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tions. It uses a transformer (Yang et al., 2019)-like 
mechanism to capture long-range dependencies and 
process global information. However, transformer 
mechanisms have built-in concepts of spatial infor-
mation. Therefore, positional encoding is used in the 
model to obtain information about location features 
in the image. In this way, both low-level and high-
level visual features that can effectively detect 
changes in color and texture are captured. The shape 
of the leaves or other parts of the plant was used to 
identify the disease. The MobileNet Involution block 
is further followed by another basic block and two 
flattening layers. The Softmax classifier is used at 
the output layer. The size of the output layer depends 
on the number of diseases in the training set. The 
output layer assigns the disease/health label to the 
input image. 

Figure 6. Loss Vs Accuracy Graph of the Proposed Model 

Results and Discussion 
The experiments were carried out on the PlantVil-
lage dataset for 8 different crops and 23 health clas-
ses. The implementation is performed in Python us-
ing TensorFlow and Keras libraries. All the experi-
ments were conducted on a Linux-based machine 
equipped with dual Xeon processors, 128 GB of 
RAM, and an 8 GB graphics card. The involutional 
models are trained using a stochastic gradient de-
scent optimizer for 40 epochs, with a fixed learning 
rate of 0.01 and a batch size of 32. The results are 
compared with those of four well-known pretrained 
CNN models, namely, InceptionResNetV2 (IRV2), 
InceptionV3 (IV3), VGG16, and VGG19. The mod-
els are evaluated in terms of naive-accuracy (NA) 
and kappa coefficient (κ) parameters. The accuracy 
and loss graphs for the proposed model are shown in 
Figure 6.  

 
Both graphs illustrate that the proposed model is 
well fit for the problem under consideration. 

Accuracy Analysis 
The accuracy of the proposed method as well as 
other tested methods is reported in Table 2 in terms 
of the NA along with the accuracy variance for all 
the crops considered here. The proposed method 
exhibited a good overall accuracy of 99.03%. Ad-
ditionally, the accuracy is also determined for spe-
cific health classes or diseases. This method is able 
to detect most plant diseases with high accuracy. 
Only the ‘Common Rust’ and ‘Potato Healthy’ 
classes had observed accuracies under 90%. The 
variance in overall accuracy is 0.67%, which can 
be considered acceptable. Table 3 provides the κ 
values for different methods, leading to similar 
observations, with the highest value of 0.9867 for 
the proposed method indicating its ability to identi-

fy plant diseases. Compared to the other methods 
tested here, the proposed method convincingly out-
performed the other methods. 

Impact of Learning Rate 
Hyperparameters strongly influence the accuracy of 
deep CNN-based methods. The learning rate is one 
of the most important hyperparameters in deep 
CNNs. In this experiment, the learning rate is varied 
to examine its effects on the classification accuracy. 
In Figure 7, the κ values are plotted against learning 
rates ranging from 0.0001 to 0.1. The graphs show 
that when the learning rate is too small or too large, 
the accuracy is not good. A learning rate of 0.001 is 
the most accurate, whereas a learning rate of 0.1 is 
the least accurate. For all the crops, the same trend 
in accuracy was observed for both training and vali-
dation. Consequently, 0.001 is the recommended 
learning rate for the proposed method. 
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 99.00  0.43 96.40 1.02  98.19 0.23 99.01 .53 

  100.0 0.00 100.0 0.00 100.0 0.00 99.52 0.47 

 100.00 0.00   99.41 0.58 99.41  0.58 

 98.13  0.73   99.14 0.60 97.03 1.09 

   0.19 1.85 91.05 2.01 2.31 84.23  2.44 

      

      

   96.17 1.25   

 96.21 0.73 85.71 1.95 96.41 1.11 93.53 1.43 75.00  0.76 

 99.00 0.00  98.82 1.17  94.14  1.64 

 100.00  0.00     

 98.81  0.61     

  0.00 94.73 2.56  3.19  3.01 

      

 98.18  0.58 99.27 0.51    

  95.23 1.47    

 86.12  5.19 96.15 3.71    

 99.13  0.96 98.45 0.86 94.24 1.68 94.03 1.67   

  96.80 1.81  98.72 1.27 98.91  1.08 

      

OA 98.13  1.26 95.27 4.73 99.04 0.95 98.28 1.71 97.00  3.00 

  

Figure 7. Training Accuracy vs Validation Accuracy 
Graph at Different Learning Rates  

Figure 8. Training Accuracy vs Validation Accuracy 
Graph for Different Batch Sizes 
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 Proposed   VGG16 VGG19 

 98.88 1.80  78.31  3.70 96.88  1.77 85.74  3.26 

      

      

  92.53 2.06 96.25 1.50 96.29  1.49 98.07 1.10 

     98.93 1.05 

     98.93 1.05 

 97.27  1.14 100.00  0.00   95.80 1.54 

   87.97  2.71  78.81  3.11 

   73.35 4.32 91.44  3.33 89.22  3.84 

 97.91  1.03 98.75  0.87    

 95.01  1.87  94.60 1.74   

  78.33  2.74 94.56 1.66  73.12  

   98.68 1.30  89.05  

      

   99.78 0.21   

    2.56   92.30  3.84 

 97.27  1.84  83.27  3.18 92.39  2.41 .04 

    91.62  2.51  

   82.92  3.39 91.87  2.57  

  95.86 4.04    

  91.10  1.64 89.23 3.03 88.83  2.99 89.05  

  95.50 2.52  94.06  2.86 98.46  

      

OA  97.69  1.32 99.22 0.77 96.94 1.51 97.35  

Impact of Batch Size 
Another hyperparameter examined in this experiment 
is batch size. For various batch sizes, the disease clas-
sification accuracy is obtained. In Figure 8, the κ val-
ues obtained at various batch sizes are plotted. The 
figure shows that for moderate batch sizes, the dis-
ease classification accuracy is good. For all crops, the 
batch size that yields the best κ values is 32, and the 
batch size that yields the worst accuracy is 64. The 
accuracy is poor for both smaller and larger batch 
sizes. 

Conclusion 
In this work, an involution neural network-based 
method was proposed for plant disease identification 
using digital images of plant leaves. Initially, the in-
put image is segmented to remove the background 
details while retaining only the desired part of the 

leaf. The segmented image is processed through var-
ious blocks of the involution neural network model 
to identify the health class of the leaf. The proposed 
method can identify diseases in multiple crops. 
Many existing methods are designed for specific 
crops only. Compared to those methods, the pro-
posed method is a multicrop disease identification 
system. The experimental results demonstrated that 
the proposed method can identify plant diseases 
with a high accuracy of 99%. It outperformed sever-
al other CNN-based methods. 
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