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Plants are susceptible to pathogen infections during their growing period leading to 
reduced crop quality and yield. Traditional disease detection methods such as expert 
diagnosis and pathogen analysis rely on experienced professionals and could be time-
consuming and prone to errors. Deep convolutional neural networks (CNNs) have 
exhibited their potential to detect plant diseases on the basis of visual patterns of 
leaves. Most of the existing CNN based methods do not take advantage of additional 
information. Most of the disease significantly affects the texture of the plant leaves. 
Therefore, texture features can provide complementary information to get better 
results. In this paper, local binary pat tern (LBP) technique is used to extract texture 
information that is stacked with original image. A CNN model is proposed that takes 
embedded texture and spectral information to detect crop diseases using leaf images. 
The experiments are carried out on Apple, Corn, and Potato crops from Plant Village 
dataset. The proposed method achieved the overall accuracy up to 98.73% (κÊ = 
98.04). It is found that LBP makes significant difference in disease classification accu-
racy and helps the proposed method exhibit better performance than some existing 
well known CNN models.  

 
 

Introduction 
World population relies on agriculture for food secu-
rity and various other needs. Agriculture isthe back-
bone of the economy of many countries. A large 
population of the world depends on agriculture sec-
tor for employment. Crops are susceptible to a wide 
variety of diseases caused by viruses, bacteria, fungi, 
and some environmental factors (Khamparia et al., 
2020). Plant diseases have devastating effects on 
crops. Loss of crop yield can lead to food shortages 
and loss of employment that adversely affect the 
economy. Early detection and accurate diagnosis of 
plant diseases are crucial for effective disease man-
agement. Traditionally, plant disease management 
relies on human expert knowledge that could be sub-
jective and biased sometimes. Recent advances in 
computer vision and image processing have enabled 
the development of automated systems for plant dis-
ease detection (Vishnoi et al., 2021). The images of 
different parts of plants are captured and processed 
using machine learning techniques that capture in-
formation on colour, shape, and texture, etc. to de-
tect and diagnose plant diseases. These methods con-

sist of two major components: feature extraction 
techniques and a classifier. Feature extraction is a 
process of transforming raw data into a set of repre-
sentative features that are used as input to the classi-
fier (Kumar, 2020). Based on the extracted features, 
the classifier identifies the diseases. These tech-
niques can be used to develop automatic methods for 
plant disease identification. However, training the 
machine learning models could be computationally 
expensive depending on the size of the training set. 
Advent of graphical processing unit(GPU) based 
processors has paved the way for the development of 
advanced machine learning models. Over the years, 
various feature extraction and classification tech-
niques have been used to develop plant disease de-
tection systems. Feature extraction is a process of 
transforming raw data into a set of representative 
features such as edges, texture (Kumar and Dikshit, 
2014, 2015a, 2015b) shape, and size, etc. that more 
useful in classification. The similarities in disease 
symptoms or infected areas adversely affect the per-
formance of the classifier to identify/classify the in-
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fected leaves. Therefore, feature extraction is crucial 
for disease detection. (Esmaeel et al., 2018) deter-
mined texture information using Gray level co-
occurrence matrix (GLCM) to detect diseases in 
Bean plants using leaf images. Local binary pattern 
(LBP) is another well known technique for texture 
analysis. (Mathew et al., 2021) introduced a method 
for classifying three fungal diseases in banana using 
local texture features extracted with ELBP resulting 
in high accuracy. (Dhar et al., 2022) presented a 
method to classify leaf diseases using Gist and LBP 
features, which are extracted separately and then 
combined. (Pattnaik and Parvathi, 2021) compared 
histogram of oriented gradient (HOG) and LBP 
where HOG outperforming LBP with an accuracy of 
97%. (Chaudhari et al., 2022) compared LBP and 
(GLCM) features with color features for recognizing 
banana plant leaf diseases. LBP features were found 
to be more accurate than GLCM features when used 
with SVM, while KNN gave better results with 
GLCM. (Basavaiah et al., 2020) fused multiple fea-
tures including color histograms, Hu Moments, 
GLCM, and LBP for classifying leaf diseases using 
tree based classifiers with 94% accuracy. (Kusumo 
et al., 2018) investigated different types of features 
including color, scale-invariant feature transform 
(SIFT), speed up robust features (SURF), oriented 
FAST and rotated BRIEF (ORB), and HOG. Results 
suggest that color is the most informative feature 
with RGB providing the highest accuracy. (Devi and 
egam, 2019) analyzed the leaf disease of rice plants 
using a wavelet transform, SIFT, and GLCM tech-
niques. Classification labels the plant image indicat-
ing whether it is healthy or diseased. In recent years, 
the image based plant disease detection has moved 
to deep learning era (Zhang et al., 2018). Convolu-
tional neural network (CNN) is a modern deep learn-
ing method having a layered architecture that can 
learn hierarchical features from the images to per-
form various computer vision tasks. Different layers 
of a CNN perform the tasks of feature extraction and 
classification (Xu et al., 2017) making them highly 
effective in accurately classifying plant diseases. 
(Zhao et al., 2021) developed a CNN model that 
achieves an average identification accuracy of 
96.81% for diseases in tomato and 99.24% accuracy 
for diseases in grape crop. (Bensaadi and Louchene, 
2023) developed a low-complexity CNN architec-
ture for automatic plant disease classification that 
achieves 97.04% accuracy using over 57,000 tomato 
leaf images from nine classes. (Kawasaki et al., 
2015) developed a CNN based disease detection sys-
tem that demonstrated the accuracy of 94.9%. 
(Thakur et al., 2023) introduced a lightweight Con-
volutional Neural Network called VGG-ICNN for 
identifying crop diseases using plant-leaf images. 
The model achieved a high accuracy of 99.16%. 
(Agarwal et al., 2020) proposed a simplified CNN 
model with 8 hidden layers outperforming several 

other CNN models with 98.4% accuracy. (Zhang et 
al., 2019) proposed a faster R-CNN approach to de-
tect rice diseases with high accuracy. Another R-
CNN based method was developed by (Carion et al., 
2020) for plant diseases detection. (Chen and Wu, 
2023) used faster R-CNN to mark grape leaf lesions 
and ResNet or disease identification. It also used 
DCGAN to generate synthetic grape lesion images, 
which were combined with real images to train Res-
Net. (Gajjar et al., 2022) developed a deep CNN 
model for crop disease identification and deployed 
the model on an embedded platform. They reported a 
classification accuracy of 96.88%. (Vishnoi et al., 
2023) proposed a comparatively smaller CNN model 
for apple disease identification. It takes the ad-
vantage of augmentation to increase the training set 
size. The model performed well with the overall ac-
curacy of 98%. (Stephen et al., 2023) extracted use-
ful features with a 3D2D CNN, which are used in an 
optimized deep generative adversarial network 
(GAN) to classify rice diseases. The authors 
achieved good classification accuracy of 98.7% by 
integrating different deep learning techniques. Most 
of the existing deep CNN methods do not use exter-
nal source of information besides the input image 
and rely on their own feature extraction capabilities. 
However, there are some issues with CNNs such as 
limited generalization, sensitive to noise, and insen-
sitivity to texture as they are designed to learn fea-
tures from the spatial layout of pixels instead of tex-
ture patterns. that need special consideration. These 
issues can be mitigated by providing some additional 
informationas input. Additional input to CNNs about 
shape, size, or texture can provide following ad-
vantages.  
Improved Generalization: By combining the 
learned features from CNNs and texture information, 
the model can learn more robust and discriminative 
features that can generalize better to new data (Li et 
al., 2015).  
Improved Robustness to Noise: Texture infor -
mation can enhance the robustness of the model to 
image noise, which can improve the model’s accura-
cy in noisy environments (Kylberg and Sintorn, 
2013).  
Improved Texture Sensitivity: Texture patterns 
that are not easily detected by CNNs, which can im-
prove the model’s performance on texture-based 
classification tasks (Zhou et al.,  2008). In this work, 
a deep CNN model is developed that takes leaf im-
age and its texture information as input to detect 
plant disease. The effectiveness of the system is ex-
amined on different cropsincluding apple, corn, and 
potato. 
 
Materials and method  
A new CNN plant disease detection method is pro-
posed that makes use of a widely acceptable texture 
analysis technique known as LBP to extract texture 
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information on plant leaf images. It uses leaf image 
and its texture information as input to CNN to iden-
tify the disease. The complete flow of the process is 
shown in Fig. 1. The raw leaf image is segmented 
with the help of Grabcut method to separte fore-
ground and background. LBP technique works better 
on binary images, therefore, Otsu thresholding is 
applied to binarize the image. The segmented image 
and texture information obtained from LBP are com-
bined to from the joint input dataset, which is divi-
ded into training and test sets. The CNN model is 
trained to classify the input leaf image into one of 
the healthy or disease class to detect the disease. 

Dataset 
Leaf images for various crop disease datasets are 
obtained from the Plant Village repository contai-
ning over 54,000 images across 38 crop categories. 
Three crops including apple (Malus domestica), corn 
(Zea mays), and potato (Solanum tuberosum) are 
considered for this work. The leaf images for the 
chosen crops are divided in a total of 11 different 
classes. Some sample images are shown in Fig. 2. 
The training and test sets are formed with a ratio of 
75:25 ratio for each class. Table 1 presents the dis-
tribution of images among different classes in the 
dataset. A brief description of different classes is 

Fig 1 : Work flow for plant disease detection and identification  

Fig. 2 Samples from dataset for different crops  
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Table 1 Dataset for image classification of apple corn and potato leaf disease 

Disease Class Total images Training set (75%) Test set (25%) 

Apple.Scab 504 378 126 

Apple.BlackRot 497 373 124 

Apple.CedarRust 220 165 55 

Apple.Healthy 1316 987 329 

Corn.Gray leaf spot 411 308 103 

Corn.Common rust 954 716 239 

Corn.healthy 930 698 233 

Corn.Northern Leaf Blight 788 591 197 

Potato.Early blight 800 600 150 

Potato.healthy 122 92 31 

Potato.Late blight 800 600 150 

given as follows.  
Black rot, caused by Diplodia seriata, presents as 
frog-eye spots with purplish or reddish edges and a 
brown center on leaves, which can lead to defolia-
tion and tree weakening in severe cases (Crespo et 
al., 2018). Scab, an intense fungal disease, causes 
olive-green or brown leaf spots and impacts apples, 
potatoes, and other crops, spreading quickly in dry 
soils through Streptomyces scabies (Bowen et al., 
2011). Cedar rust, resulting from Gymnosporangium 
juniperi-virginianae, produces bright orange spots on 
apple and juniper species, with severe symptoms 
potentially damaging apple crops (Crowell, 1934). 
Gray leaf spot, caused by Cercospora zeae-maydis, 
affects corn by creating brown-gray lesions that 
spread seasonally (Ward et al., 1999). Common rust, 
an airborne disease supported by cool, humid condi-
tions, manifests as brown pustules that blacken with 
age, although its impact on yield is minimal (Raid 
and Comstock, 2000). Leaf blight, from Helminthos-
porium turcicum, appears as reddish-purple spots on 
corn leaves, with significant damage in susceptible 
hybrids (Perkins et al., 1987). Early blight, driven by 
Alternaria solani, shows as concentric-ringed spots 
on tomato and potato leaves, potentially causing leaf 
yellowing and wilting (Van der Waals et al., 2001). 
Lastly, late blight, caused by Phytophthora infestans, 
induces dark lesions resembling frost damage on 
tomato and potato plants, with rot extending deeply 
into tubers (Mizubuti and Fry, 2006). 
Grab-Cut Segmentation 
A leaf image may contain several other details or 
sometimes others objects apart from leaf itself. Seg-
mentation can help to remove unwanted background 
from an image and identify specific region of inte-
rest (ROI). Therefore, in the proposed method, the 
raw image is segmented to separate plant leaf and 
background. GrabCut (Qi et al., 2022) is a well 

known segmentation technique that uses Gaussian 
mixture model to estimate the color distribution of 
the ROI and background. It creates a Markov ran-
dom field over pixel labels with an energy func-
tion that favors connected regions with identical 
labels. The mathematical formulation of GrabCut 
can be expressed as an energy minimization pro-
blem, where the objective is to find a segmentation 
of the image that minimizes the energy function 
(Xiong et al., 2020). The energy function for 
GrabCut is defined as follows: 

where S is the segmentation mask, Edata is the data 
term that measures the difference between the co-
lor of the pixels and the color of the foreground 
and background models, and Esmooth is the 
smoothness term that encourages spatial coherence 
of the segmentation. The data term can be expres-
sed as: 

where i is the pixel location, Sf and Sb are the fore-
ground and background regions defined by the 
user, and D(i) is the color vector of pixel i. The 
term Σi∈Sf D(i) measures the similarity of the fore-
ground model to the color of pixel i, while the 
term Σi∈Sb D(i) measures the similarity of the back-
ground model to the color of pixel i. The 
smoothness term can be expressed as:  
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where λ is a parameter that controls the tradeoff bet-
ween data and smoothness terms, N is the set of 
neighboring pixel pairs, w(i, j) is a spatial weight 
that measures the proximity of pixels i and j, and S(i) 
and S(j) are the segmentation values of pixels i and j. 
The term (1 − S(i)S(j)) encourages the segmentation 
to be spatially smooth i.e. neighboring pixels with 
similar colors are assigned the same segmentation 
value. The GrabCut algorithm solves this energy 
minimization problem using the graph cut technique, 
which involves constructing a graph of the image 
and partitioning it into foreground and background 
regions. The algorithm iteratively updates the fore-
ground and background models and the segmenta-
tion mask until convergence. 
Otsu Thresholding 
Thresholding is a common image processing tech-
nique that can produce a binary image by turning the 
pixels with intensities above or below a threshold as 
white and other pixels as black (Kohler, 1981). Ot-
su’s thresholding method works by analyzing the 
histogram of pixel intensities in an image and iden-
tifying the threshold value that maximizes the bet-
ween-class variance as shown in Fig. 3. The between
-class variance is a measure of the separation bet-
ween the two classes of pixels (foreground and back-
ground) and is calculated as the sum of the weighted 
variances of the two classes. The thresold value is 
determined as follows. 

 
where th* is the estimated threshold, Li is the maxi-
mum intensity value of the image, w0(th) and w1(th) 
are the probabilities of a pixel being in the back-
ground and foreground, respectively, based on the 
intensity value of the pixel, and μ0(th) and μ1(th) are 
the mean intensity values of the background and 
foreground, respectively, calculated using the pixels 
that fall below and above the threshold th. Once the 
optimal threshold is determined, the image regions 
are separated by classifying pixels with intensities 
above the threshold as foreground and those below 
the threshold as background. This process helps to 
separate ROI from the background, enhance edges, 
and remove noise from an image. 
Local Binary Pattern 
Local binary patterns (LBP) (Nikam and Agarwal, 
2008) is a popular feature extraction technique used 
in various applications such as face recognition, ob-
ject detection, and texture classification. LBP is a 
texture descriptor that can effectively represent local 
spatial patterns in an image. LBP operator works by 
comparing the intensity value of each pixel with its 
neighboring pixels as shown in Fig. 3. The resulting 
binary code is then used to describe the texture pat-
tern of the image. This process involves converting 
an image into grayscale and selecting a neighbor-

hood around each pixel. The neighborhood for a 
pixel at location (x, y) is determined as follows 
(Priya et al., 2018). 

Where cpx and cpy are the x and y coordinates of the 
center point of a circle, R is the radius of the circle, p 
is the index of a point on the circle (ranging from 0 
to P − 1), and P is the total number of points on the 
circle. This expression gives the coordinates of the 
pth point on the circle centered at (cpx, cpy ) with 
radius R. The x coordinate of the point is given by 
cpx − R sin  2πp/P, while the y coordinate is given by 
cpy + R cos  2πp/P. If a pixel is darker than the cen-
tral pixel, it is marked as black. If it is lighter, it is 
marked as white. This decision is based on a 
threshold value set by the central pixel. After mar-
king the surrounding pixels, the algorithm uses the 
resulting pattern of black and white dots to create a 
code that describes the texture of the picture in that 
area. This code is called LBP and is used as a cha-
racteristic to identify the local texture of the image. 

where LBPP,R is LBP feature value for a pixel, P is 
the number of sampling points on a circle of radius 
R centered on the pixel, ic is the intensity value of 
the center pixel, ip is the intensity value of the p-th 
sampling point, s(x) is the step function defined as: 

The LBP operator calculates a binary pattern by 
comparing the intensity values of the sampling 
points with the center pixel. If the intensity of a sam-
pling point is greater than or equal to that of the cen-
ter pixel, the corresponding bit in the binary pattern 
is set to 1, otherwise it is set to 0. The binary pattern 
is then converted to a decimal value to obtain the 
final LBP feature value for the pixel. The LBP ope-
rator can be applied at different scales and with dif-
ferent neighborhood sizes, making it a versatile tech-
nique for feature extraction. One of the unique fea-
tures of LBP is its computational efficiency. LBP 
can be computed very quickly and requires minimal 
memory, making it suitable for real-time applica-
tions. Additionally, LBP is robust to imagenoise and 
illumination variations, which are common chal-
lenges in computer vision tasks. Another unique as-
pect of LBP is its ability to encode both spatial and 
textural information. This makes LBP particularly 
useful for tasks that require both global and local 
feature representation, such as object detection and 
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recognition (Priya et al., 2018). The outputs of seg-
mentation, thresholding, and LBP are shown Fig. 3 
Convolutional Neural Networks 
Convolutional Neural Networks (CNNs) are popular 
deep learning models that are commonly used for 
image classification, object detection, and other 
computer vision tasks. CNNs are designed to mimic 
the way that the human visual cortex processes vi-
sual information, making them highly effective for 
image analysis. The key feature of CNNs is the use 
of convolutional layers, which apply a set of filters 
to the input image to extract features that are rele-
vant to the task at hand. The filters parameters are 
learned during the training process and their values 
are adjusted to maximize the accuracy of the net-
work. The output of the convolutional layers is then 
passed through a series of fully connected layers, 
which are similar to the layers in a traditional neural 
network. The output of a CNN can be given as fol-
lows: 

Where, X is the input image, Y is the output class 
probabilities, f is the activation function, Wn is the 
weight matrix for the nth layer, bn is the bias vector 
for the nth layer. A new CNN model is developed in 
this work that takes a four band image as input. The 
segmented image is stacked with LBP generated 
texture image making it a 4-band input X. The first 
layer of the CNN is a convolutional layer, which 
applies a set of filters to the input image to extract 
features. The result of this computation is a new fea-
ture map, which highlights the regions of the input 
image that are relevant to the task at hand (Zhang et 
al., 2018). After the convolutional layer, the output 
is passed through a nonlinear activation function 
ReLU to introduce nonlinearity into the network. 
This is followed by a max pooling layer, which re-
duces the spatial dimensions of the feature map, 
while preserving the most important information. 
The process of convolution, activation, and pooling 
is repeated multiple times in the network, with each 
successive layer learning increasingly complex fea-
tures. There are total 12 layers of different types in 
the network as shown in Fig. 4.The final layer of the 

Fig. 3 LBP feature extraction 

Fig. 4 Architecture of CNN model for classification  
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network is a fully connected layer, which maps the 
output of the previous layer to the output class pro-
babilities. The weights and biases in this layer are 
learned during training, and the network is optimized 
to minimize the loss function, which measures the 
difference between the predicted and actual output. 
 
Results and Discussion 
The experiments are performed on a Linux machine 
equipped with 2 Xeon processors, 8GB GPU and 
128 GB RAM. The implementation is done in Py-
thon using the libraries such Keras and TensorFlow, 
etc. The CNN model is trained using stochastic gra-
dient descent method up to 300 epochs. The learning 
rate is set to 0.01. The batch size is taken as 32. The 
results are compared to four well-known pre-trained 
CNN models InceptionResnetV2 (InRsV2), Incep-
tionV3 (IncpV3), VGG16 and VGG19. The accura-
cy is determined in terms of na¨ıve-accuracy and 
Kappa coefficient (κ). The parameter naive-accuracy 
measures the overal accuracy, while κ measures the 
agreement between the predicted and actual classes, 
taking into account the possibility of correct predic-
tions occurring by chance. In addition, the impact of 
several other parameters is also analyzed. All the 
experiments are carried out for three crops namely 
Apple, Corn, and Potato from a publiclly available 
dataset known as PlantVillage. 
Accuracy analysis 
The naive-accuracy for disease classification in 
Apple, Corn and Potato crops is reported in Table 2 
along with accuracy variance. The proposed method 
observed a good overall accuracy as 98.73%, 
95.84%, and 96.9% for Apple, Corn and Potato 
crops respectively. The accuracy is also determined 
for individual diseases of different crops. All the 
health classes except Corn.Common rust and 
Corn.Healthy are classified with good accuracy of 

more than 96%. These two classes are classified 
with little inferior accuracy leading to overall accu-
racy under 96% for Corn crop. The learning errors 
are also reported in the table. The proposed method 
observed smaller variance in accuracy not more than 
4.15%. For Apple and Potato crops it is as small as 
1.26% and 2.09% respectively. The performance of 
the developed method is also compared with some 
existing pre-trained CNN based methods.  
Similar observations can be made from Table 3 also, 
where accuracy is reported in terms of κ. For diffe-
rent crops, overall κ varies 0.9465 − 0.9804 and va-
riance lies between 0.0068 − 0.0122 with lowest ac-
curacy for Corn. In recent times, a number of CNN 
based methods have been developed for plant di-
sease detection. Many of these methods use pre-
trained CNN models. For a specific problem, a pre-
trained CNN model is fine tuned that also involve 
minor modifications in the original architecture. The 
accuracy of the proposed method is compared with 
some of the pre-trained CNN-based methods inclu-
ding InceptionResNetV2, InceptionNetV3, VGG16, 
and VGG19. The proposed method outperformed 
pre-trained CNN-based methods as observed from 
Table 2 and Table 3. Sometimes accuracy parame-
ters may be misleading, therefore, the performance 
is also evaluated in terms precision, recall, and F1-
score, which are more sensitive parameters. The de-
tailed classification report is given in Table 4. All 
parameters indicate that LBP and CNN based 
method can reliably identify crop diseases. The trai-
ning accuracy is plotted against validation accuracy 
for all the crops in Fig. 5 to check the fitness of the 
CNN model used in the proposed method. It is ob-
served from the graphs that both accuracy curves 
close to each other indicating that CNN model is 
well fit to identify the crop diseases. Similar opinion 
can be derived from the curves of training and vali-

Table 2 Naive-accuracy (%) for with learning error  

Class InRsV2 IncpV3 VGG16 VGG19 Proposed Model 

Apple.Scab 88.32 ± 2.74 82.55 ± 3.10 97.48 ± 1.44 88.57 ± 2.69 98.38 ± 1.13 
Apple.Black.Rot 98.33 ± 1.17 99.21 ± 0.78 100.00 ± 0.00 100.00 ± 0.00 99.61 ± 1.35 
Apple.Cedar.Rust 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

Apple.Healthy 96.40 ± 1.02 98.17 ± 0.74 98.19 ± 0.73 99.07 ± 0.53 99.39 ± 0.43 

OA 95.27 ± 4.73 94.87 ± 5.12 98.28 ± 1.71 97.00 ± 3.00 98.73 ± 1.26 
Corn.Gray.leaf.spot 100.00 ± 0 99.55 ± 0.44 99.14 ± 0.60 97.07 ± 1.09 97.82 ± 0.96 

Corn.Common.rust 93.33 ± 1.85 91.35 ± 3.18 96.10 ± 2.21 95.14 ± 1.82 98.87 ± 0.62 

Corn.healthy 74.80 ± 3.85 76.92 ± 3.89 96.94 ± 2.91 91.53 ± 2.35 92.81 ± 3.07 
Corn.Northern.Leaf.Blight 99.14 ± 0.60 100.00 ± 0 99.58 ± 0.41 99.63 ± 0.36 100.00 ± 0 

OA 94.02 ± 5.97 94.15 ± 5.84 95.06 ± 4.93 93.63 ± 6.36 95.84 ± 4.15 

Potato.Early.blight 95.23 ± 1.47 90.86 ± 1.94 95.65 ± 1.41 100.00 ± 0 97.99 ± 0.99 

Potato.healthy 96.15 ± 3.77 100.00 ± 0 100.00 ± 0 75.07 ± 0 96.66 ± 3.27 
Potato.Late.blight 98.45 ± 0.86 94.24 ± 1.68 94.43 ± 1.67 94.41 ± 1.64 98.01 ± 0.98 

OA 96.74 ± 3.25 92.79 ± 7.20 95.34 ± 4.65 94.65 ± 5.34 96.90 ± 2.09 
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Table 3 Classification accuracy with learning error in terms of κ  

Class InRsV2 IncpV3 VGG16 VGG19 Proposed  
Model 

Apple.Scab 0.8642 ± 0.0333 0.7881 ± 0.0370 0.9688 ± 0.0177 0.8574 ± 0.0326 0.9798 ± 0.0140 

Apple.Black.rot 0.9693 ± 0.0145 0.9000 ± 0.0099 0.9814 ± 0.0130 1.0000 ± 0 0.9704 ± 0.0167 

Apple.Cedar.rust 1.0000 ± 0 0.9334 ± 0.0168 1.0000 ± 0 1.0000 ± 0 1.0000 ± 0 

Apple.Healthy 0.9253 ± 0.0206 0.9625 ± 0.0150 0.9629 ± 0.0149 0.9807 ± 0.0118 0.9878 ± 0.0088 

OA 0.9926 ± 0.0131 0.9210 ± 0.0132 0.9735 ± 0.0079 0.9537 ± 0.0141 0.9804 ± 0.0068 

Corn.Gray.leaf.spot 1.0000 ± 0 0.9937 ± 0.0026 0.9877 ± 0.0085 0.9580 ± 0.0154 0.9688 ± 0.0136 

Corn.Common.rust 0.9104 ± 0.0245 0.8777 ± 0.0217 0.8204 ± 0.0226 0.7881 ± 0.0181 0.8935 ± 0.0489 

Corn.Healthy 0.7091 ± 0.0424 0.7335 ± 0.0424 0.9144 ± 0.0333 0.8922 ± 0.0311 0.8755 ± 0.0349 

Corn.Leaf.Blight 1.000 ± 0 1.000 ± 0 1.000 ± 0 1.000 ± 0 1.000 ± 0 

OA 0.9186 ± 0.0115 0.9202 ± 0.0114 0.9320 ± 0.0116 0.9123 ± 0.0119 0.9465 ± 0.0098 

Potato.Early.blight 0.9190 ± 0.0265 0.8292 ± 0.0339 0.8917 ± 0.0257 1.0000 ± 0 0.9624 ± 0.0138 

Potato.Healthy 0.9586 ± 0.0140 0.9422 ± 0.0162 0.9883 ± 0.0129 0.9977 ± 0.0036 0.9976 ± 0.0044 

Potato.Late.blight 0.9710 ± 0.0164 0.8923 ± 0.0303 0.8883 ± 0.0229 0.9395 ± 0.0294 0.9627 ± 0.0154 

OA 0.9417 ± 0.0152 0.8607 ± 0.0222 0.9036 ± 0.0192 0.9175 ± 0.0177 0.9627 ± 0.0122 

Table 4 Classification report of the proposed method  

Class Precision Recall F1-Score 

Apple.Scab 0.99 0.92 0.97 

Apple.BlackRot 0.99 0.97 1.00 

Apple.CedarRust 0.99 0.97 0.98 

Apple.Healthy 0.96 0.98 0.97 

Macro avg (Apple) 0.98 0.96 0.98 

Weighted avg (Apple) 0.98 0.99 0.99 

Corn.Gray leaf spot 0.92 0.73 0.81 

Corn.Common rust 0.98 0.97 0.97 

Corn.healthy 0.88 0.96 0.92 

Corn.Northern Leaf Blight 0.96 0.97 0.96 

Macro avg (Corn) 0.96 0.96 0.96 

Weighted avg (Corn) 0.96 0.98 0.98 

Potato.Early blight 0.97 0.89 0.93 

Potato.healthy 0.98 0.94 0.96 

Potato.Late blight 0.84 0.88 0.86 

Macro avg (Potato) 0.96 0.90 0.96 

Weighted avg (Potato) 0.97 0.97 0.97 
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dation losses. The impact of LBP on overall accura-
cy of the method is analyzed by comparing the re-
sults of CNN with and without LBP in Table 5. It is 
observed that LBP helps to significantly boost the 
performance of the CNN model. The accuracy for 
Apple is improved from 96.76% to 98.73%. It is in-
creased from 94.10% to 95.84% for Corn and 
91.79% to 96.90% for Potato. The κ values also 
show an improvement between 2% to 7% for diffe-

Fig. 5 Training accuracy vs. validation accuracy and training loss vs. validation loss:  
(a) Apple (b) Corn (c) Potato 

rent crops. 
Table 6 presents a comparison of the accuracy of the 
proposed method with several existing methods that 
use texture information. All these methods utilize 
texture information as input for their learning mod-
els. Different techniques are employed to extract 
texture features in these methods. It is observed from 
the table that the proposed method outperforms sev-
eral other approaches. 

Table 6: Comparison of the proposed method with some existing methods for plant disease detection 
based on texture features  

Reference Crop  Features Technique for  
Texture Feature Extraction 

Class Accuracy 

(Patil  
et al., 2017) 

Soybean Color, 
shape, and 
texture 

LBP and Gabor filter Mosaic Virus,  
Septoria Brown Spot 
and Pod Mottle 

96% 

(Patil  
et al., 2024) 

Maize Color and 
texture 

YCbCr color histogram and 
Local Gradient Binary 
Pattern histogram 

Leaf Blight, Leaf 
Rust 

98.33% 

(Pinto  
et al., 2016) 

Sunflower Texture GLMC   89% 

(Hlaing 
 et al., 2018) 

Tomato Color and 
texture 

SIFT Bacterial Spot, Leaf 
Mold, Mosaic Virus, 
Late Blight, Two 
Spotted Spider Mite, 
Target Spot, Healthy 

85% 

(Pantazi  
et al.,  2019) 

Vine leaves Color and 
texture 

LBP Downy mildew, 
Powdery mildew, 
and Black rot 

95% 

Proposed 
Method 

Apple, Corn, 
Potato, Tomato 

Color and 
texture 

RGB, LBP Scab, Black Rot, 
Cedar Rust, Healthy, 
etc. 

98.73% 
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Impact of learning rate 
In this experiment, one of the important hyperpara-
meters learning rate is varied and its impact on clas-
sification accuracy is analyzed. The κ values in per-
centage are plotted against learning rate in Fig. 6. 
The learning rate varies from 0.0001 to 0.1. It is ob-
served from the graphs that disease identification or 
classification accuracy is inferior when learning rate 
is too small or too large. The best accuracy is obtai-
ned for a learning rate of 0.01. Both training and 
validation accuracies have shown the same trend for 
all the crops. Therefore, the recommended learning 
rate for the proposed method is 0.01.  

Impact of batch size 
The batch size is another hyper-parameter that is 
analyzed here. The disease classification accuracy is 
obtained for different batch sizes. The batchsize is 
taken as 16, 32, 64, and 128. The κ values in percen-
tage obtained at different batch sizes are plotted in 
Fig. 7. It can be observed from the figure that di-
sease classification accuracy is good at moderate 
batch size. The best κ values are obtained when 
batch size is 32 for all the three crops. Both at smal-
ler and larger batch sizes the accuracy is inferior. 
The similar observations can be made for both trai-
ning and validation accuraies from the figure.  

Fig. 6 Accuracy at different learning rates: (a) Apple (b) Corn (c) Potato 

Fig. 7 Accuracy at different batch sizes: (a) Apple (b) Corn (c) Potato 
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Conclusion 
In this work, CNN models have been developed for 
plant leaf disease identification using leaf images. 
The developed model consists of four convolutions 
four max-pooling 
layers, and a fully connected layer. The texture of a 
leaf is highly affected by the adverse impact of a 
disease. Therefore, texture information can comple-
ment the capability of a CNN model. Furthermore, a 
plant disease detection framework was proposed that 
uses LBP for textuire feature extraction. The texture 
features are stacked with original image that produc-
es a four-band image for input to CNN model. In 
addition, GrabCut segmentation and Otsu’s thresh-
olding thechniques are also used to remove back-
ground details in the image. These techniques collec-
tively enhance the model’s ability to discern disease-
related patterns within the image.  
The experiments were carried out on Apple, Corn, 
Potato, and Tomato crops from the PlantVillage da-
taset. The model was trained for 300 epochs. The 
results demonstrated the good performance of the 
framework. It was observed that the texture infor-
mation complemented the CNN model very well to 
produce better results. The overall accuracy of 95.84
-98.73% was observed for different crops. The inclu-
sion of texture information resulted in the impro-
vement of accuracy up to 5.11%. The performance 
of the proposed method was compared with some 
pre-trained CNN-based methods and some existing 
texture-based disease detection methods. The propo-
sed method performed better than several methods. 
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